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In this paper, we present a new two-dimensional viscometer, and the hydrodynamic
calculations used to obtain the surface viscosities from the measurements. In order to
interpret the experiments, performed with solutions of sodium dodecyl sulfate (SDS)
and also with monolayers of insoluble surfactants, we develop various hydrodynamic
models of soluble Gibbs monolayers and of incompressible Langmuir monolayers,
that describe well the experimental results. In the case of SDS solutions, the calcula-
tions allow the determination of the surface shear viscosity, and its value is in good
agreement with previous studies.

1. Introduction
The surface shear viscosity of adsorbed surfactant or polymer monolayers plays

a crucial role in many dynamic processes at fluid interfaces, such as the formation,
stability and rheology of emulsions and foams. It is also relevant for industrial
processes involving film coating, flotation or oil recovery (see Malhotra & Wasan
1988). Various types of viscometers (see Edwards, Brenner & Wasan 1991) have
been developed to measure surface viscosities; the most widely used is the deep-
channel viscometer (with a sensitivity of order 10−7 Pa m s according to Mannheimer
& Schechter 1970), where one measures the flow through a channel created by a
surface pressure gradient; the rotating wall knife-edge viscometer has a sensitivity of
order 10−8 Pa m s. The main drawback of these two techniques is the use of tracer
particles, which are introduced in the monolayers in order to visualize the velocity
field or the rotation period. Other devices such as the rotating disk avoid this problem,
but are less sensitive (10−5 Pa m s). Recently, Danov et al. (1995) and Petkov, Danov &
Denkov (1996) have developed an original method: they measure the drag coefficient
of a small particle partially immersed in the subphase. Their method is sensitive and it
does not make use of any tracers, but the determination of the surface viscosity from
the measurements requires numerical resolution of the hydrodynamic equations. In
this paper, we present a new viscosimeter, based on the same principle: we measure
the drag force acting on a macroscopic disk translating in a viscous surface layer
and overlaying a subphase of finite depth. The simpler geometry allows an analytical
solution of the hydrodynamic problem.

In other respects, a thin disk lying in a viscous sheet is the macroscopic analogue of
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biological systems such as proteins or lipids incorporated into membranes (Saffman
& Delbruck 1975). Protein diffusion within bilayers has been the subject of a variety
of theoretical treatments. The first hydrodynamic model was proposed by Saffman
(1976), who treats the rotation and the translation of a thin disk in a viscous sheet
overlaying a subphase of infinite depth. Saffman calculated, in the limit of large
viscosities, an approximate solution for the drag force acting on the disk. This model
was later extended by Hughes, Pailthorpe & White (1981), who gave the general
expression for the force at any viscosity. The applicability of this model to the
diffusion of proteins or lipids in membranes was analysed in Vaz et al. (1987) and
Clegg & Vaz (1985). More recently, Evans & Sackmann (1988) studied the influence
of the finite thickness of the water substrate on the motion of the disk. They imposed
a proportionality between the velocity and the shear stress exerted by the subphase on
the membrane and they calculated the force acting on the disk overlying a subphase
of finite depth. In their model, the subphase depth is small compared to the disk
radius. Stone & Ajdari (1998) have generalized these results to any value of subphase
depth, using numerical calculations; they have also studied the range of validity of
the Evans–Sackmann formula.

In this paper, we use the same geometry as Evans & Sackmann, but we explicitly
calculate the shear stress and the drag force using the lubrication approximation,
which allows an explicit analytical resolution. We study both the case of an incom-
pressible Langmuir (insoluble) monolayer (we find the same expression for the force as
that given in Evans & Sackman 1988) and the case of a Gibbs (soluble) monolayer for
which we obtain new results. Soluble monolayers were previously studied by Danov
et al. (1995) but in a different geometry and with numerical methods. The results on
insoluble monolayers are used to interpret experiments with insoluble surfactants and
polymers; the results on soluble monolayers describe the behaviour of monolayers of
soluble surfactants. For those monolayers, especially in the case of polymer mono-
layers, the surface viscosity may depend on frequency. In this paper, we only consider
the behaviour at zero frequency; we therefore do not study the viscoelastic response.

From a pure theoretical viewpoint this system is also interesting, since it reveals the
importance of the coupling between the surface layer and the subphase. Indeed this
coupling allows a solution of the two-dimensional Stokes equation, which satisfies all
the boundary conditions. This important point was understood first by Saffman, who
showed that the bidimensional motion of membrane-trapped particles induces flow
fields in the surrounding medium, which exert a reaction force on the surface layer.
The underlying bulk layer exerts a drag force and screens the surface velocity field.
This eliminates the logarithmic divergence of the velocity field in a pure bidimensional
motion.

The paper is organized as follows: we first study the hydrodynamics and calculate
the force acting on the thin disk in cases of both an insoluble and a soluble viscous
monolayer. In § 3, the experimental device is presented and the results obtained on
several systems are compared with the predicted forces. This comparison gives a
measure of the various viscosities. Finally, we discuss possible improvements of the
experimental device and we give some perspectives.

2. Forces acting on a translating thin disk
2.1. Hydrodynamic equations

We consider the problem sketched on figure 1. A disk of radius R moves at constant
velocity U along the surface. The subphase has a finite depth h in the z-direction
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Figure 1. Parameters of the hydrodynamic model: a disk moves at constant velocity U in
a viscous sheet, overlaying a subphase of finite depth h.

and is infinite in the perpendicular directions. The depth h is small compared to the
radius of the disk R. In this section, we determine the velocity field in the subphase.
We denote by v= (vr, vθ, vz), the velocity in the subphase and by P the pressure field;
we use cylindrical coordinates. We assume that a stationary state is reached. The
subphase is treated as an incompressible fluid and the hydrodynamic equations are
the Stokes and the continuity equations:

η∇2v = ∇P and ∇ · v = 0. (2.1a, b)

The boundary conditions on the velocity are the no-slip conditions at the surface
z= h and at the bottom of the subphase z = 0:

v(r, θ, 0) = 0,
v(r, θ, h) = us(r, θ),

}
(2.2)

where us is the velocity of the surface. We now use the lubrication approximation:
we neglect the vertical component of the velocity vz compared to the horizontal
components and we ignore the vertical pressure gradient ∂P/∂z. This assumption
remains valid as long as h is smaller than any horizontal characteristic length scale
of the velocity field. Under these conditions, the Stokes equation reduces to

η
∂2vq

∂z2
= ∇sP (2.3)

where vq is the velocity parallel to the surface. This last equation is integrated, taking
account of the boundary conditions:

v(r, θ, z) =
(z2 − zh)

2η
∇s P (r, θ) +

z

h
us(r, θ). (2.4)

From (2.4), the shear stress at the upper surface can be calculated:

σt = −η ∂v
∂z

∣∣∣∣
z= h

= −h
2
∇s P − ηus

h
(2.5)

where σt is the projection of the stress tensor on the z-axis (i.e. the force per unit
area exerted by the subphase on the surface layer). An other important quantity is
the average velocity defined by

V =
1

h

∫ h

0

vq(z) dz. (2.6)
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Using the continuity equation and the boundary conditions on the velocity, it is easy
to show, that ∇s · V = 0. This leads to a useful relation:

∇s · us =
h2

6η
∇2
s P . (2.7)

Equation (2.7) implies that ∇2
s P does not vanish for a compressible surface layer.

This appears surprising at first sight, as ∇2P = 0, and ∂P/∂z is negligible compared
to ∂P/∂x. However, in Appendix A, we show that the second derivative with respect
to z of the pressure is of the same order of magnitude as the other second derivatives
with respect to x, y.

2.2. Incompressible viscous monolayer

We denote by us(r, θ),Πs the surface velocity and the surface pressure, respectively, and
by ηs the bidimensional analogue of the viscosity. Dimensionally, ηs is homogeneous
to a viscosity times a length. The Stokes equation, applied to the surface layer, reads

ηs∇2
s us − ∇sΠs + σt = 0 (2.8)

and the boundary conditions are

us(r = R, θ) = U ,

lim
r→∞ us = 0,

lim
r→∞Πs = 0.

 (2.9)

We look for stationary solutions depending only on r and θ. The symmetry of the
problem imposes the following form of the surface velocity field:

us

∣∣∣∣ us, r(r, θ) = Uf(r) cos θ
us, θ(r, θ) = −Ug(r) sin θ

(2.10)

where f and g are yet unknown functions.

2.2.1. Subphase pressure

For an incompressible surface layer, the velocity obeys ∇s · us = 0. This equation
combined with (2.7) imposes that ∇2

s P = 0. In this case, the pressure can be considered
as independent of the height z and in order to respect the symmetry, it is written as
P = h(r) cos θ. We obtain

for r < R: P (r, θ) = Ar cos θ,
for r > R: P (r, θ) = B/r cos θ.

The continuity of the velocity and the shear stress (2.5), at r=R, implies that the
pressure gradient is also continuous. Taking account of the continuity of P and ∇sP ,
at r = R we find A = B = 0. This result is in agreement with those found by Hughes
et al. (1981) and Stone & Ajdari (1998). The pressure is uniform in the subphase and
the shear stress reduces to σt = −ηus/h. This results from a simple shear flow.

2.2.2. Surface flow field

For an incompressible surface layer, the Stokes and the continuity equations read

ηs∇2
s us − ∇sΠs − ηus

h
= 0 and ∇s · us = 0. (2.11a, b)

To solve this system of equations, we take respectively the divergence and the curl of
(2.11a); we obtain a system of decoupled equations for the surface pressure and the
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curl of the velocity:

∇2
s Πs = 0, (2.12a)

(∇2
s − κ2)∇s × us = 0 with κ2 =

η

hηs
. (2.12b)

The inverse length κ is an important parameter of the problem. In fact, κ−1 is the
characteristic length scale of the velocity decay; we call it the hydrodynamic screening
length. Far away from the disk, the velocity decreases exponentially over a distance
κ−1. This new length imposes another condition for the validity of the lubrication
approximation: κ−1 � h or equivalently ηs � ηh.

The curl of the velocity, satisfying (2.12b), is a linear combination (Abramowitz &
Stegun 1984) of the modified Bessel functions of order one K1 and I1, but due to the
fact that the velocity decays to zero at infinity, we obtain

∇s × us = C1UK1(κr) sin θ ez. (2.13)

Equation (2.12a) together with the symmetry of the problem then imposes

Πs =
M cos θ

r
. (2.14)

C1 and M are integration constants.
The velocity field and the surface pressure are obtained by integration from (2.13),

and by imposing the continuity of both components of the surface velocity at the
edge of the disk (r = R):

us = U

∣∣∣∣∣∣∣∣∣

(
R2

r2

K2(κR)

K0(κR)
+
K2(κr)−K0(κr)

K0(κR)

)
cos θ

−
(
−R

2

r2

K2(κR)

K0(κR)
+
K0(κr) +K2(κr)

K0(κR)

)
sin θ

(2.15)

and

Πs =
ηU

h

R2

r

K2(κR)

K0(κR)
cos θ. (2.16)

2.2.3. Total force on the disk

The force acting on the disk has two contributions. The first contribution is the
drag force due to the subphase:

Fsub. = πR2σt = −πR2 η

h
U . (2.17)

The second one is the force exerted by the thin surface layer on the perimeter of the

disk, Fsurf. =
∫ 2π

0
R(σrrer + σrθeθ) dθ. The components σij of the two-dimensional stress

are given by σrr = −Πs + 2ηs∂us, r/∂r and σrθ = ηs
(
∂us, r/r∂θ + r∂(us, θ/r)/∂r

)
taken at

r = R. Using the expressions for the velocity and the surface pressure (2.15), (2.16),
we obtain

Fsurf. = −πR
2η

h

(
2
K2(κR)

K0(κR)
− 1

)
U (2.18)

so that the total force, Ftot. =Fsub. + Fsurf. is equal to

Ftot. = −2πR2η

h

K2(κR)

K0(κR)
U . (2.19)
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It is the same expression as found by Evans & Sackmann (1988), who did not calculate
explicitly the shear stress σt; they only imposed the proportionality between the shear
stress and the local velocity: σt = bsus. More recently, Stone & Ajdari computed
numerically the force acting on the disk for any value of the subphase depth and they
studied the range of validity of the Evans–Sackmann formula. They showed that the
force (2.19) provides an excellent approximation for κ−1 > h and κ−2 > hR and that
the lubrication approximation is accurate provided that h/R < 0.2.

In the limit of large viscosities, where the lubrication approximation is legitimate,
the characteristic distance κ−1 diverges. The asymptotic behaviour of the force is
found by replacing κ−1 by the lateral size of the monolayer L. The force tends to

Ftot.∼− 4πηs
ln (L/R) + ln (1/2)

U . (2.20)

This expression is in agreement with the result presented in Happel & Brenner (1991),
where the force per unit length acting on an infinite cylinder translating in a viscous
fluid between two planes a distance L apart is calculated: the same logarithmic
dependence on the cylinder size is found. (This dependence comes from the fact that
the influence of the subphase vanishes in the limit of large viscosities, and that only
the surface contribution is important; the system becomes therefore equivalent to a
real two-dimensional system.)

In the limit of small surface viscosities, ηs → 0, equivalent to κ−1 → 0, the drag force
due to the thin surface layer does not tend to zero. Indeed, even if the bidimensional
viscous force vanishes, the surface pressure gradient does not vanish and tends to
a finite value; this is the origin of a finite bidimensional force. More precisely, the
value of the bidimensional force is equal to the drag force due to the subphase, as
already pointed out by Stone & Ajdari (1998). However, it is important to notice
that this limit simultaneously supposes ηs = 0 and the incompressibility of the flow.
In practice, it corresponds to a monolayer, sufficiently dilute that the surface viscosity
is negligible but sufficiently concentrated that the flow field can always be considered
as incompressible. This limit does not allow one to extrapolate to the case of the
disk translating at the free surface of a subphase, in the absence of any adsorbed
monolayer, because the Stokes equations do not reduce to the zero shear stress
condition of a free interface, even when ηs = 0. This means that the bulk flows are
different in the presence and in the absence of a monolayer.

2.2.4. Incompressibility criterion

The surfactant conservation equation ∇s · (Γus) = 0, where Γ is the surface density,
gives an order of magnitude of ∇s · us:

∇s · us ≈ − 1

Γ
us · ∇sΓ =

1

E
us · ∇sΠs (2.21)

where E = Γ∂Πs/∂Γ is the Gibbs elasticity of the monolayer. Using (2.16), the surface
pressure gradient can be estimated by considering the surface flow as incompressible.
The monolayer can then be considered as incompressible if

∇s · us � U

R
(2.22)

which is equivalent to

E � ηRU

h
. (2.23)
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2.3. Gibbs monolayer

A compressible surface layer has two viscosities: the shear viscosity ηs and the
dilational viscosity ηd associated with the dilational rate of the area. In order to
describe the experiments performed with the SDS solution, we assume that the
surface layer is formed by soluble molecules and that the exchanges between the bulk
and the interface are instantaneous so that the surface is always at equilibrium with
the bulk and that the surface pressure is uniform. In § 3.3, we discuss in detail the
various time scales associated with the disk displacement and to the surface–bulk
exchange. There is then a flux of surfactant molecules from the surface to the bulk,
so that the surface layer is necessarily compressible.

2.3.1. Velocity field

For a compressible monolayer, the Stokes equation reads

ηs∇2
s us + ηd∇s(∇s · us)− ∇sΠs + σt = 0. (2.24)

The shear stress is still given by (2.5) and the surface pressure is uniform, so that, for
a soluble compressible monolayer,

ηs∇2
s us + ηd∇s(∇s · us)− h

2
∇s P − ηus

h
= 0, (2.25)

with the same boundary conditions as for an incompressible monolayer. Here also,
the symmetry of the problem imposes the angular variation of the surface velocity us:

us = U

∣∣∣∣ f(r) cos θ
−g(r) sin θ.

(2.26)

We calculate respectively the curl and the divergence of the velocity field; using the
relation (2.7) between ∇2

s P and ∇s · us, we obtain

(∇2
s − κ2)∇s × us = 0, (2.27a)

(∇2
s − κ̃2)∇s · us = 0 with κ̃2 =

4η

h(ηs + ηd)
. (2.27b)

Both the divergence and the curl of the velocity decay to zero at infinity and therefore

∇s × us = B1K1(κr)U sin θ ez, (2.28a)

∇s · us = B2K1(κ̃r)U cos θ, (2.28b)

where B1 and B2 are two integration constants.

2.3.2. Bulk pressure

The bulk pressure satisfies (2.7). For r < R, the velocity is constant and equal to
U , so that its divergence vanishes, and for r > R the velocity divergence is given by
(2.28b). The bulk pressure then satisfies the following relations:

∇2
s P = 0 for r < R,

∇2
s P =

6η

h2
B2UK1(κ̃r) cos θ for r > R.

 (2.29)

The equations for the velocity and the pressure are now decoupled, and, as in the
insoluble case, it is possible to find a solution of the form (2.26) for us and of the
form h(r) cos θ for P (r). The explicit derivation is rather tedious and is not presented
here; the expressions for the velocity and of the pressure are given in Appendix B.
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2.3.3. Total force on the disk

As in the incompressible case, the force acting on the disk has two origins. The
drag force due to the subphase is

Fsub. = πR2σt = −πR2

(
η

h
U +

h

2
∇sP
)

(2.30)

and the force due to the thin surface layer is Fsurf. =
∫ 2π

0
R(σrrer + σrθeθ) dθ. The

transverse component of the stress is similar to that of incompressible monolayers
and the radial component is σrr = 2ηs∂usr/∂r + (ηd − ηs)∇s · us. Using the expressions
given in Appendix B, we obtain

Ftot. = −πR2 ηU

h

(
8

K2(κ̃R)K2(κR)

K0(κ̃R)K2(κR) + 4K2(κ̃R)K0(κR)

)
. (2.31)

In the limit of vanishing viscosities (ηs, ηd → 0) the two-dimensional force due to the
thin surface layer vanishes (unlike in the case of a compressible monolayer) as there
is no surface pressure gradient. More precisely

lim
ηs, ηd→0

Ftot. = lim
ηs, ηd→0

Fsub. = − 8
5
πR2 ηU

h
. (2.32)

In this limit, the hydrodynamic equations reduce to a vanishing shear stress at a
free surface. Consequently, although the lubrication approximation may be no longer
valid in the limit of small viscosities†, we believe that the limiting value of the force
(2.32) is the drag force for a pure subphase:

Fwater = − 8
5
πR2 ηU

h
. (2.33)

This result is confirmed by the direct calculation of the force, presented in Appendix C,
in the singular‡ configuration of a disk overlying a subphase in the absence of any
monolayer. In the limit of small screening length (still with the constraint h � κ−1

to be able to use the lubrication approximation), the asymptotic behaviour of the
bidimensional force is

Fsurf. = − 8
5
πR2 ηU

h

(
1

κR
+

1

κ̃R

)
(2.34)

and the force scales as

Fsurf. = −R
(ηηs
h

)1/2

U ∝ −Rηs U
κ−1

. (2.35)

The monolayer of viscosity ηs exerts a viscous drag on the perimeter R of the disk
with a velocity gradient U/κ−1. Indeed, the variation of the surface velocity occurs
over a distance κ−1∝ (ηs)

1/2. It is interesting to notice that the velocity gradient
increases with a decreasing surface viscosity, as shown in Appendix B, and diverges
in the limit of ηs = 0.

† In this limit, the variation of the velocity occurs over distances κ−1 and κ̃−1, which become
smaller than h.
‡ The shear stress σt vanishes at the free interface and has a finite constant value on the disk, so

that σt is discontinuous at r = R.
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Figure 2. Experimental two-dimensional viscometer: when the trough moves, the subphase drags
the disk, which bends the glass capillary. The deviation ∆d(U ), proportional to the bending of the
fibre, is measured on a distant screen.

3. Viscosity measurements
In this section, we first present the experimental device, the calibration of the force

sensor and the experimental results. Then the comparison with the predicted force
allows us to obtain the values of the surface viscosities.

3.1. Experimental device

The experimental device is sketched on figure 2. It is made of a Plexiglas trough
(of depth 10 mm, width 112 mm and length 212 mm). The trough is linked to the
mobile barrier of a commercial Langmuir trough (Lauda FW1), and can be moved at
velocity U (0.18 mm s−1 < U < 1.15 mm s−1). The trough is filled with purified water
(Millipore system), to get a depth h (2 mm < h < 8 mm). A thin disk of radius R
(10 mm < R < 25 mm), cut in a poly(ethylene-terephthalate) film, lies at the air–water
interface. The disk has a tiny hole in its centre; a thin vertical glass capillary of radius
r= 30 µm is used as a force sensor. The upper end of the capillary is clamped in a
fixed position and the lower end is inserted in the disk hole. The motion of the trough
induces a drag of the water subphase on the disk, and a bending of the capillary as
shown on figure 2. A laser beam is pointed at the capillary and its reflection is observed
on a distant screen. The deviation of the laser spot on the screen is proportional to
the bending of the capillary and thus to the total drag force acting on the disk. Before
each experiment, the trough and the disk are washed with pure water. The adsorbed
polymer (polyoxyethylene oxide) or surfactant (stearic acid) monolayer is obtained by
solution of the product in chloroform (Merck pro analysi), and then spreading it onto
pure water using a micro-syringe. After deposition, we wait for the evaporation of
the spreading solvent. For each measurement of the deviation ∆d, the disk is initially
at one end of the trough; the trough is slowly accelerated until it reaches a constant
velocity U . After an inertial regime, the deviation of the spot stabilizes at a constant
value. This value is measured as the disk goes through the centre of the trough. For
each velocity, we also measure the deviation −∆d corresponding to the experiment
with the opposite velocity −U to increase the precision of the measurement and
to avoid any offset problem. All experiments are performed at room temperature
T = 20± 2 ◦C.

These experimental conditions correspond well to the assumptions made in the
theoretical description:

we reach a well-defined stationary state;
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Figure 3. Influence of the subphase depth h on the deflection ∆d(U ), R = 25 mm,
pure water: ◦, h = 2 mm; �, h = 4 mm; �, h = 8 mm; – – –, linear fit.

the depth of the water subphase is indeed smaller than the radius of the disk, since
in most of the experiments, h = 4 mm and R = 25 mm, so that h/R < 0.2, and from
Stone & Ajdari (1998), we know that the lubrication approximation is accurate;

the inertial terms can be neglected compared to the viscous terms in the hydrody-
namic description, so that linear hydrodynamics is appropriate. Indeed, we have

‖ρv · ∇v‖
‖η∇2v‖ ≈

ρUh2

ηR
≈ 1

10
(3.1)

with ρ the liquid volumic mass.

3.2. Calibration with pure water

As already pointed out in the previous section, the total drag force acting on the
disk has two contributions: that of the subphase (water) and of the monolayer. It is
important to determine the two contributions independently; we therefore measure
the force exerted on the disk by a pure water subphase in the absence of any adsorbed
layer. Another crucial reason for the measurement with pure water is the calibration
of the glass fibre: it being not of homogeneous radius it is difficult both to calculate
and to calibrate its bending constant. Using (2.32), we know for each velocity the
corresponding force, so that each deviation ∆d(U ) can be associated with a value of
the force.

Figure 3 shows the deviation ∆d as a function of the velocity U of the trough,
obtained with a disk of radius R = 25 mm, for three values of h. We observe the
excellent linearity of the response and the decrease of the deviation (and thus of
the force) with increasing depth h. In figure 4, the deviation of the spot is plotted
as a function of R2U/h to check the variation with the various parameters R, h,U;
we obtain a good agreement with the theoretical prediction. The experiments were
performed with four different sizes of disk, three values of the subphase depth and
five velocities. The order of magnitude of the measured forces is 10−7–10−6 N.

The linearity observed on figure 4 indicates that the effects of the finite size of
the trough are negligible, since important finite size effects would induce higher drag
forces on the larger disks, which is not the case in our measurements. Another way
to estimate the importance of the finite size effect is to study theoretically the velocity
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Figure 4. Deflection ∆d as a function of UR2/h, pure water. R= 10 mm: ◦, h= 1 mm; �, h= 2 mm;
�, h= 4 mm. R= 15 mm: 4, h= 1 mm; /, h= 2 mm; 5, h= 4 mm. R= 20 mm: ., h= 2 mm; +,
h= 4 mm. R = 25 mm: ×, h= 2 mm; ∗, h= 4 mm; – – –, linear fit.

field. In Appendix C, we calculate the average velocity for an infinite system and
we see that, for a disk of R = 25 mm, the velocity is Vθ = −0.08U at r = 55 mm,
which is the distance to the walls in the experimental device. This gives an idea of the
difference between the experimental and the theoretical velocity fields. We also solved
the hydrodynamic equations in a steady state but assuming that the velocity vanishes
at a distance L from the centre. This is only approximate but it gives a logarithmic
dependence on the size of the system and leads to a maximum correction of about
10% compared to a system of infinite size.

3.3. Soluble surfactant: SDS

3.3.1. Experimental results

In order to estimate the sensitivity of the experimental device, it is interesting to
study solutions of SDS, for which the surface viscosity has been already measured by
Petkov et al. (1996) and Poskanzer & Goodrich (1975b). With two different experimen-
tal techniques, both groups find a surface viscosity around 2× 10−6 Pa m s. In our ex-
periment, water is replaced by a concentrated solution of SDS (c= 10 g l−1 ≈ 4 c.m.c.,
the critical micellar concentration of SDS being c.m.c. = 2.4 g l−1). The subphase has
almost the same viscosity as water (the viscosity is increased by less than 5%) and is
covered by an adsorbed layer of soluble surfactants. The concentration of the solution
is the same as in Petkov et al. (1996), which allows comparison of the results. The
other reason to study concentrated solutions is that the surface is at instantaneous
equilibrium with the bulk; the exchanges of surfactants are fast enough to ensure
a constant surface concentration. Indeed the characteristic time associated with the
disk displacement (T =R/U) is roughly 25 s, which is higher than the characteristic
time associated with the diffusional exchanges between the bulk and the interface
(0.4 s for a SDS solution of c = 1.5 g l−1, from MacLeod & Radke 1993). For each
experiment, we prepared and used fresh solutions to avoid the hydrolysis of SDS into
dodecanol. The time scale of this hydrolysis is of order of one day (Mysels 1986),
while the measurements are performed over less than one hour.

Figure 5(a) shows the deviations of the spot position, as a function of the velocity,
with a disk of radius R= 25 mm and with three different depth values. As in the case
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Figure 5. Influence of SDS solution on the deflection for different depth (R= 25 mm, c= 10 g l−1):
◦, h = 2 mm; �, h = 4 mm; �, h = 8 mm; – – –, linear fit. (a) Deflection ∆d(U ) for different subphase
depth; (b) comparison between the deflection for SDS and for pure water.

of pure water, we checked the linearity of the response and the decrease of the force,
when h increases. On figure 5(b), the deviation obtained with SDS is compared to
that found with pure water. The deviation is increased by 18% to 35%, depending
on the depth h, as water is replaced by the SDS solution. This increase is much larger
than the small increase due to the change in the bulk viscosity, and is the signature
of surface viscosity. The ratio of the deviations for the SDS solution and pure water
is mostly independent of the velocity.

3.3.2. Interpretation

As the exchanges between the bulk and the surface are sufficiently fast to ensure
a constant value of the surface pressure, the surface layer of surfactants can be
described by the theoretical model of a compressible and soluble layer, developed in
§ 2.3. The ratio of deviations of the spot directly gives the ratio of the theoretical
forces on the disk, calculated in the presence and in the absence of adsorbed layer:

∆dSDS

∆dwater

=
Ftot.

Fwater

=
5

8

(
8K2(κ̃R)K2(κR)

K0(κ̃R)K2(κR) + 4K2(κ̃R)K0(κR)

)
. (3.2)
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The force ratio is independent of the velocity, in agreement with the results of
figure 5(b). The monolayer has two independent surface viscosities and we perform
only one measurement. As Petkov et al. (1996), we will assume that one of the
viscosities is known, for example ηd, and we deduce the other viscosity from the
experimental results. Kao et al. (1992) give 3× 10−8 Pa m s for the dilational viscosity.
Using this value, the results of figure 5(b) together with (3.2) let us obtain the shear
viscosity. For all the experiments (with three different depths), we find the same value:

ηs = 2.6× 10−6 Pa m s. (3.3)

This value is close to that given in Petkov et al. (1996) and Poskanzer & Goodrich
(1975b). It is important to notice that the choice of ηd is not crucial, because the
ratio of the spot deviations varies only very weakly with ηd, as already noticed by
Danov et al. (1995). If we assume, that the two viscosities are of the same order of
magnitude ηs ≈ ηd, we find ηs = 2.3× 10−6 Pa m s, which is close to the previous value.
This range of viscosities corresponds to κR≈ 10 and, in the limit of large κR, the
force ratio increases as the square of the depth h:

Ftot.

Fwater

− 1 ≈
(

8

5

1

κR
+

2

5

1

κ̃R

)
∝ √h. (3.4)

This dependence also agrees with the results of figure 5(b).

3.4. Insoluble monolayers

In this subsection, we study monolayers of stearic acid (H35C17-COOH), and of a
telechelic polyethylene oxide (PEO). The stearic acid was purchased from Sigma and
the end-capped PEO (H25C12-O-(CH2-CH2-O)800-C12H25) samples were synthesised
by G. Beinert and F. Isel (ICS, Strasbourg): commercial PEO with terminal OH
groups, with narrow mass distribution, was purchased and then functionalized. The
synthesis details can be found in Maitre (1997) along with the characterization.

For such insoluble monolayers, there is no exchange with the bulk, and according
to (2.23), the monolayer can be considered as incompressible, if E� ηRU/h. With our
experimental conditions, this criterion becomes E� 10−2 mN m−1, which is always
fulfilled, as soon as a small quantity of surfactant is spread at the air–water interface
(see Gaines 1966 and Poskanzer & Goodrich 1975a for the stearic acid isotherm and
Barentin, Muller & Joanny 1998 for the end-capped PEO isotherm).

3.4.1. Results

Figure 6 shows the first results obtained with the two surfactants and the ratio of
spot deviations ∆d(monolayer)/∆d(water) obtained at different surface densities. All the
measurements are performed with one disk and one depth. For small surface densities,
the ratios of deviations, for the two surfactants, are close. Indeed the increase of the
deviation, compared to the deviation obtained with pure water, is roughly 25%.
For higher surface densities, the ratio increases and depends on the nature of the
surfactant. For dense monolayers of stearic acid, the drag force becomes larger than
with PEO monolayers. Finally, as in the case of the SDS solutions, the ratios of the
spot deviations are independent of the velocity.

3.4.2. Interpretation

The insoluble surfactant monolayers are described by the theoretical model of
incompressible layers, developed in § 2.2. The ratio of the deviations corresponds to
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Figure 6. Ratio between the deflections for insoluble monolayers and for pure water. R= 20 mm,
h= 4 mm and stearic acid: •, 36 Å2/molecule; ◦, 20 Å2/molecule. R= 25 mm, h = 4 mm and PEO:

N, 27 Å2/monomer; 4, 17 Å2/monomer.

the ratio of the theoretical forces:

∆dmonolayer

∆dwater

=
Ftot.

Fwater

=
5

4

K2(κR)

K0(κR)
. (3.5)

In the limit of small viscosity, ηs → 0, the ratio of the forces (3.5) tends to 5
4
,

and not to 1, because there is a remaining bidimensional force due to the surface
pressure gradient, that does not vanish. This predicted value of 5

4
describes well the

experimental results obtained at small surface densities. However we cannot estimate
the surface viscosity, because the bidimensional viscous force is negligible compared
to the bidimensional force due to the pressure gradients. At higher surface densities,
when the ratio of the deviations increases and becomes larger than this limit value
of 5

4
, it is possible, using (3.5), to determine the surface viscosities. We obtain, for the

PEO monolayer at 17Å2/monomer,

ηs = 1.6× 10−6 Pa m s (3.6)

and for the stearic acid monolayer at 20 Å2/molecule

ηs = 5× 10−7 Pa m s. (3.7)

This last value is smaller than that measured by Poskanzer & Goodrich (1975a). In
this range of surface densities, the surface pressure of monolayers of stearic acid,
increases strongly (Gaines 1966). As we could not measure the surface pressure, it is
possible that the uncertainty due to the spreading is at the origin of this discrepancy
between the two values.

4. Concluding remarks
In this paper, we have presented a new and original two-dimensional viscosimeter,

and the hydrodynamic calculations used to obtain the surface viscosities from the
measurements. We have developed different hydrodynamic models of insoluble and
soluble (with no surface pressure gradient) monolayers and to describe the experi-
mental systems. Since we have no absolute calibration of the force sensor, we had to
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calculate the drag force acting on the disk in the absence of any adsorbed surface
layer; we found an expression higher by a factor 8

5
than the force resulting from a

simple shear (Stone & Ajdari 1998).
The theoretical predictions describe well the drag forces obtained with the insoluble

monolayers of surfactants at small surface densities and give an estimation of the
surface viscosities at higher densities. We have also performed measurements with
other insoluble polymer monolayers (Poly(vinyl-acetate) and Poly(dimethyl-siloxane)
in the presence of SDS). In all cases, the measured force at low density is of order
25% larger than the value obtained in the absence of monolayer in agreement with
our predictions. The absolute value of the surface shear viscosity is however too low
to be measured quantitatively for these systems. In the case of the solutions of SDS,
the calculations allow one to determine the surface viscosity; the value is in good
agreement with previous studies (Petkov et al. 1996; Poskanzer & Goodrich 1975b).

In order to study more systematically adsorbed monolayers such as PEO or stearic
acid, it is necessary to improve the experimental device by combining the viscosity
measurement with a surface pressure measurement. Another improvement would be to
use a capillary with a well-defined bending constant, in order to check experimentally
the expression for the drag force in the case of pure water in the absence of monolayer.
In order to analyse the influence of the disk radius and of the finite size of the trough,
it would also be useful to visualize the surface velocity field and to compare it with the
theoretical field calculated for an infinite system. Finally, it would be interesting to do
the same experiment at finite frequency in order to measure the viscoelasticity of the
monolayers. The steady state results can still be used if the frequency is smaller than
both the surface viscoelastic relaxation time τ−1

R and the diffusion time of vorticity
over the bulk liquid film η/(h2ρ).

We are grateful to F. Isel, G. Beinert and J. François (ICS, Strasbourg, France) who
have provided the telechelic PEO. We also thank P. Woehl and G. Bouchet (IMF,
Strasbourg, France) for constructive discussions and P. Muller (ICS, Strasbourg,
France) for his help in the experiments.

Appendix A. Bulk pressure gradients
In this Appendix, we study the order of magnitude of the various derivatives of

the pressure, in the lubrication approximation. From the Stokes equations (2.1a, b),
we know that

∂P

∂x
∼ ηU

h2
,

∂P

∂z
∼ ηvz

h2
. (A 1)

In the lubrication approximation, vz is negligible compared to U, which implies that
∂P/∂z is also negligible compared to ∂P/∂x. The incompressibility of the flow ∇·v = 0
leads to

vz

h
' U

R
(A 2)

with h� R. From (A 1), we can estimate the second derivatives of the pressure:

∂2P

∂x2
' η U

h2R
,

∂2P

∂z2
' η vz

h3
. (A 3)

The relation (A 2) imposes that U/h2R and vz/h
3 are of the same order of magnitude.

This means that ∂2P/∂x2 and ∂2P/∂z2 are also of the same order of magnitude.
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Appendix B. Velocity and pressure fields of Gibbs soluble monolayer
B.1. Velocity field

The surface velocity has the following expression:

us = U

∣∣∣∣ f(r) cos θ

−g(r) sin θ,
(B 1)

with

f(r) = −B3

r2
− B1

r

K1(κr)

κr
− B2

κ̃

(
K0(κ̃r) +

K1(κ̃r)

κ̃r

)
(B 2)

and

g(r) =
B3

r2
+
B2

r

K1(κ̃r)

κ̃r
+
B1

κ

(
K0(κr) +

K1(κr)

κr

)
. (B 3)

The integration constants are expressed as functions of κ, κ̃ and R:

B1

K0(κR)

κ
=

8K0(κR)K2(κ̃R)

K0(κ̃R)K2(κR) + 4K2(κ̃R)K0(κR)
, (B 4)

B2

K0(κ̃R)

κ̃
=

2K2(κR)K0(κ̃R)

K0(κ̃R)K2(κR) + 4K2(κ̃R)K0(κR)
(B 5)

and

B3 = −R
2

2

(
B1

K2(κR)

κ
+ B2

K2(κ̃R)

κ̃

)
. (B 6)

B.2. Influence of the surface viscosity on the velocity field

On figure 7(a), we plot the surface velocity us, θ(r, θ= π/2) as a function of r, for three
values of the shear surface viscosity. Close to the disk the velocity is negative, the
flow has the same direction as U , and far from the disk the velocity becomes positive,
which is a consequence of the flux conservation. The velocity gradients increase when
the surface viscosity decreases. If the monolayer is less viscous, the disk motion
induces a velocity field that decays faster with the distance. On figure 7(b), we plot
the radial surface velocity us, r(r, θ= 0), for three values of the surface shear viscosity.

B.3. Bulk pressure

For r <R, the pressure is given by

P (r, θ) = −3η

h2
B2

K0(κ̃R)

κ̃
rU cos θ (B 7)

and for r >R

P (r, θ) = −3η

h2

B2

κ̃
U

(
2
R

r

K1(κ̃R)

κ̃
− 2

K1(κ̃r)

κ̃
+
R2

r
K0(κ̃R)

)
cos θ. (B 8)

Appendix C. Force in the absence of a surface layer
C.1. Bulk pressure

For r < R, the velocity is constant, equal to U , so that its divergence vanishes and
(2.7) becomes

∇2
s P = 0. (C 1)
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Figure 7. Effect of the surface shear viscosity on the velocity of the Gibbs monolayer
(ηs = ηd, R= 25 mm): ηs = 10−5 Pa m s (— ·—), ηs = 10−6 Pa m s (– – –), ηs = 10−7 Pa m s (——). (a)
us, θ(r, θ= π/2) as a function of r; (b) us, r(r, θ= 0) as a function of r.

The pressure varies thus as

P (r, θ) = ArU cos θ (C 2)

where A is a constant. For r >R, the shear stress (2.5) vanishes at the free surface, so
that

∇sP = −2η

h2
us. (C 3)

Taking the divergence of this equation and comparing with (2.7), we obtain

∇2
s P = 0, ∇s · us = 0. (C 4)

The pressure field is therefore given by

P (r, θ) =
B

r
U cos θ (C 5)

where B is an other constant related to A by the continuity of the pressure at r = R,
B = AR2.
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C.2. Average velocity

We define the average velocity, as in § 2.1, by

V (r, θ) =
1

h

∫ h

0

vq(r, θ, z) dz = − h2

12η
∇sP +

us

2
. (C 6)

For r < R, us =U and for r > R the velocity is proportional to the pressure gradient
(C 3). Using the expressions for the pressure, we find

V =

∣∣∣∣∣∣∣∣∣

(
− h2

12η
A+

1

2

)
U for r < R

h2

3η
A
R2

r2
(U + 2U sin θ eθ) for r > R.

(C 7)

To determine the constant A, we use the fact that the radial component of the
average velocity Vr , associated with mass conservation, is continuous at r=R. In a
finite system, this condition is equivalent to writing that the mass flux or flow through

a plane perpendicular to the disk movement is zero:
∫ L

0
V (r, 1

2
π) · ex dr = 0, where L

is the size of the trough and ex is the unit vector along U . This condition implies

A =
6

5

η

h2
. (C 8)

This result allows the determination of the pressure gradient under the disk and the
shear stress on the surface using (2.5). We finally find that the drag force is

Fwater = − 8
5
πR2 ηU

h
. (C 9)

This is the same expression as found with a soluble surface layer, in the limit of
vanishing surface viscosities. Using (C 8), we can express the average velocity as

V =

∣∣∣∣∣∣
2
5
U for r < R

2

5

R2

r2
(U + 2U sin θ eθ) for r > R.

(C 10)

The radial component of the average velocity Vr is continuous when r = R as implied
by the conservation of the mass flux. The transverse component Vθ is not associated
with mass conservation. It is discontinuous in the lubrication approximation. In
practice, with a finite but small surface viscosity there exists at the edge of the disk
a thin boundary layer where the tangential velocity varies very rapidly. Our model is
not able to describe correctly this fast variation.
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